One of eight startups competing in Midwest regional Clean Energy Challenge

(Update: RVS Rubber Solutions won the Feb. 9 competition and $50,000 grant, moving on to the national competition in June.)

According to the U.S. Environmental Protection Agency (EPA), about 100 million pounds of tire components discarded during the manufacturing process are dumped in landfills nationally each year because the body ply—the tire’s largest component—can’t be effectively recycled.

But RVS Rubber Solutions, a student startup based at Case Western Reserve University, believes it’s come up with a solution to this environmental hazard: new technology that extracts the rubber and steel from within the components in a cost-effective and environmentally friendly way.

And on Feb. 9, the company’s co-founders will present their Resonant Vibrational Separation (RVS) technology to a panel of judges and live audience in Chicago as one of eight student-startup finalists in the Cleantech University Prize (Cleantech UP) competition presented by Clean Energy Trust, a Chicago-based energy innovation nonprofit.

The event will showcase eight of the most innovative and promising university-based “clean-tech” companies in the Midwest for a chance to win $50,000. The winning team will advance to the Clean Energy Trust Challenge event in May to compete against other regional Cleantech UP winners at a national U.S. Department of Energy event in June.

The co-founders and principals of RVS Rubber Solutions are Pavel Galchenko, a Case Western Reserve sophomore studying biochemistry and applied data science, and Yohann Samarasinghe, a sophomore studying nanoengineering and business at the University of California, San Diego. Both are 2015 Aurora (Ohio) High School graduates.

Photo of Pavel Galchenko

Pavel Galchenko

“We’re honored to be competing in such a prestigious competition,” Galchenko said. “It kind of validates the technology and how far we’ve come in just a year—thanks to guidance from the School of Law’s Intellectual Property Venture Clinic and access to collaborative space at think[box].”

Body plies and belts, which are often made from polyester and steel, give the tire strength and flexibility. During tire manufacturing, the slightest defect cannot be tolerated. Because of this, large quantities of materials are rejected to ensure product quality and safety. Most of these rejected components can be recycled, however the steel body ply cannot, meaning it must be disposed of in landfills.

When disposed of in landfills, the body ply also releases harmful toxins into the environment, according to the EPA.

RVS has found a way to repurpose the rubber within the material, reducing and potentially eliminating waste, while providing rubber products manufacturers with high-quality material to make them less dependent on environmentally harmful virgin rubber for a range of applications.

RVS Rubber Solutions expects its technology to revolutionize the rubber recycling process. RVS Tech induces vibrations within the plies to break the rubber off the steel to create an almost perfect separation of the base components. This is also done without degrading the quality of the rubber, resulting in various reusable applications in the consumer marketplace.

“We recycle the component materials from tires rejected during their manufacturing in a very cost-efficient process,” Samarasinghe said. “We are a ‘negative-waste company,’ meaning we are actually reducing the amount of waste material entering landfills from other producers by reintroducing the rejected tire component into the consumer market after our RVS Tech has processed it.”

This article was originally published Feb. 7, 2017.